US009075535B2

a2 United States Patent

Beeken et al.

US 9,075,535 B2
*Jul. 7, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

SOURCE CLEANING CASCADED VOLUMES
USING REFERENCE COUNTS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Christopher B. Beeken, Eastleigh (GB);

John P. Wilkinson, Salisbury (GB)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/775,278

Filed: Feb. 25, 2013

Prior Publication Data
US 2013/0346713 Al Dec. 26, 2013
Related U.S. Application Data

Continuation of application No. 13/532,756, filed on
Jun. 25, 2012.

Int. Cl.
GO6F 12/00 (2006.01)
GO6F 13/00 (2006.01)
(Continued)
U.S. CL
CPCcccee. GO6F 3/065 (2013.01); GOGF 3/0689

(2013.01); GO6F 3/0619 (2013.01); GO6F
3/0652 (2013.01); GO6F 11/1448 (2013.01);
GOG6F 2201/84 (2013.01)

Field of Classification Search
CPC GOG6F 11/1446; GO6F 11/1448; GO6F
11/1458; GOGF 3/065; GOG6F 2201/84; GO6F
3/0652; GO6F 3/0619; GOG6F 3/0689

711/114, 161, 162, E12.013; 707/633,
707/659, 813-830
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,522,037 A
7,395,378 Bl

5/1996 Kitagawa et al.
7/2008 Pemdharkar et al.

(Continued)
FOREIGN PATENT DOCUMENTS

1726472 1/2006
1926819 3/2007

OTHER PUBLICATIONS

CN

Microsoft Technet; How Volume Shadow Copy Service Works;
retrieved from http://technet.microsoft.com/en-us/library/
cc785914(d=printer,v=W3.10).aspx; Mar. 28, 2003.

(Continued)

Primary Examiner — Yong Choe
Assistant Examiner — Shane Woolwine
(74) Attorney, Agent, or Firm — James L. Baudino

(57) ABSTRACT

A system, process, and product for source cleaning cascaded
volumes include the ability to store a number of cascaded
backup volumes and prepare received writes for storage. The
system, process, and product also include the ability to exam-
ine a metadata set associated with a volume region for a write
to determine whether another volume depends on the region
and write the new data to the region if another volume is not
dependent. The system, process, and product further include
the ability to determine whether a write is for a volume region
that is a canonical source and, if so, decrement a reference
count in a metadata set associated with the region and estab-
lish the volume of the region as a canonical source for a
metadata set associated with a new metadata set location
identifier.

12 Claims, 13 Drawing Sheets

COMPUTER SYSTEM

MEMORY

1110
PROCESSOR |’
1130 \

INSTRUCTIONS

1133
OPERATING SYSTEM

1132 -

f 1140 LA

134

APPLICATION(S)

1135
BACKUP MANAGER

| /O SYSTEM |\
1120

1138

DATA

WRITE DATA
137
CASCADE METADATA
1138

US 9,075,535 B2

Page 2
(51) Int.CL 2010/0218038 Al* 82010 Tkeuchi et al. ooocoon...... 714/6
GOGF 13/28 (2006.01) P1005 18757 A1 125010 Bechmera
GOGF 3/06 (2006.01) 2011/0208932 Al 82011 Aegirflga?:tél.
GO6F 11/14 (2006.01) 2013/0073519 AL* 3/2013 Lewis etal ..o, 707/610
(56) References Cited OTHER PUBLICATIONS

U.S. PATENT DOCUMENTS

7,669,024 B2

7,733,782 B2

7,904,684 B2
2006/0053259 Al*
2008/0215837 Al
2009/0106332 Al
2009/0319735 Al
2010/0036996 Al
2010/0042755 Al*
2010/0088468 Al

2/2010
6/2010
3/2011
3/2006
9/2008
4/2009
12/2009
2/2010
2/2010
4/2010

Fuente

Sunnell et al.

Werner et al.

Berkowitz etal. 711/162
Agombar et al.

Agombar et al.

Agombar et al.

Agombar et al.

Fuenteetal. ... 710/22
Agombar et al.

IBM Corp.; FlashCopy Mappings; retrieved from http://publib.boul-
der.ibm.com/infocenter/storwize/ic/topic/com.ibm.storw . . . ; Sep. 8,
2011.

Wikipedia; Inode; retrieved from en.wikipedia.org/w/index.
php?title=Inode&oldid=494679136; May 22, 2012.

U.S.Appl. No. 13/532,687, filed Jun. 25,2012, John P. Agombar et al.
Rumney, Dan; Visualizing IBM SAN Volume Controller FlashCopy
Mappings; retrieved from www.danrumney.co.uk/papers/
visualfcms/visualisefems.pdf; Jan. 22, 2009.

* cited by examiner

US 9,075,535 B2

Sheet 1 of 13

Jul. 7, 2015

U.S. Patent

¢cl

egzl qazl 2021 gzl Ol
] | |]
/ / / J
[[[[
INNTOA | | 3nn1oA | | 3nn1oA JNNTOA
dnyova || dnxova dnyiova | | Advinied ~
| M~
IOVIOLS
\ V1VAv.LIW 3avOosyd / oclL
ezl
Y3 T10491NOD I9VIOILS

N3LSAS FOVHOLS

o/

ANHOMLAN

NOILVOINNIWINOD

INILSAS
LACETVE] NN

U.S. Patent Jul. 7, 2015 Sheet 2 of 13 US 9,075,535 B2

u// 200

220

222

FIG. 2

212¢
1
1
1
1

212b
0
1
2
3
210

PV
PV
PV
PV

212a

U.S. Patent Jul. 7, 2015 Sheet 3 of 13 US 9,075,535 B2

/ 300
\
230

220

FIG. 3

0

1

2

3
210

PV
PV
PV
PV

U.S. Patent Jul. 7, 2015 Sheet 4 of 13 US 9,075,535 B2

230

/ 300

220

FIG. 4

0

1

2

3

2

1

\
210

PV
BVA
PV
PV
BVA
PV

U.S. Patent Jul. 7, 2015 Sheet 5 of 13 US 9,075,535 B2

530

/ 500
1
6
3
4
540

1

6

3

4

\\
550

FIG. 5

520

0

1

2

3

2

1

\
510

PV
BVA
PV
PV
BVA
PV

U.S. Patent Jul. 7, 2015 Sheet 6 of 13 US 9,075,535 B2

530

/ 500
1
6
3
4
540

FIG. 6

520

0

1

2

3

2

1

3

3

\
510

PV
BVA
PV
BVC
BVA
PV
PV
BVA

US 9,075,535 B2

Sheet 7 of 13

Jul. 7, 2015

U.S. Patent

0L

/. Old

0c.

0lZ

s

4

PlEAU] | PlEAU L and
PlEAU] | PlEAU 0 and
Pl[eAU] L € VA4
Pl[eAU] L € Nd
ol € L Nd
Pl[eAU] L ¢ VA4
Pl[eAU] ¢ € ONd
Pl[eAU] € ¢ Nd
Pl[eAU] L L VA4
6 1% 0 Nd
TSNS
PCLL K¢LL acll eclL.

US 9,075,535 B2

Sheet 8 of 13

Jul. 7, 2015

U.S. Patent

0L

8 9ld

0c.

0lZ

s

4

PleAU| | | Nd
PlleAy | 0 dnd
PlleAy | € VAd
PleAU| | € Nd
PlleAy ¢ | dnd
PlleAy | ¢ VAd
PlleAy ¢ € OAd
PlleAy € ¢ Nd
PlleAy | | VAd
PlleAy € 0 Nd

US 9,075,535 B2

Sheet 9 of 13

Jul. 7, 2015

U.S. Patent

V6 9Ol NOIOTY
NI V1vd
NO aN3d3a
e INNTOA
d3H10 NOIO3H
SleX
304N0S
ANNTOAOL |, IVOINONYD
V1va M3IN JLI-EM [* NOI9TY OL NILLIHIM HIHLONY
VK HLIM Q3L1VIDOSSY NOI9DTYH €6
826 ONIAYH FJANTOA LX3AN HO4
35 VIVAYLIN 404 SOOTVYLYD JNNTOA ININVYXI

JINO 3LvOIANI Ol LNNOD
JONIHF43d HSIN9VLST

0v6 \

NOIO3d

¥Z6 S \A|Q

A 4

NOILVOO1 VIVAYLINW 1V | v¥6 \
13S VIvVavia 404 304N0S
TVOINONVO SV JNNTOA
OL-N3ILLIdM HSITaVvLS3

ANNTOA d314ILN3Al m_Oﬂ_ODu_Om
01 v1va NOI93H AdOD IYOINONYD
JANNTOA

A 806
Vivd d04 304N0S
TVOINONVO SV JNNTOA

7)
0c6 \

a3idILN3dl 3LvNOIS3d

é

d3141LN3AI NOILVOO01 13S
V1vavLian INIng313a

JNNTOA
8v6 \ J oL
LM
13S Vivavian
< a3aLvIOOSSY NI LNNOD |€ v06
JONIYI4TH INTWIHD3Ad <

916 .\
006 \

“” <>

US 9,075,535 B2

Sheet 10 of 13

Jul. 7, 2015

U.S. Patent

g6 ‘9l4 13S VIVAVLIW NI VIVA ONILSIXT HOd |,
1INNOD FONFHIAFY INIWIHO3A _
96 \ V1Va ONILSIX3 O
J 30UNOS TVOINONYO AYVAIEd SY
JNNTOA Q3I4ILNIAl 3LYNOISIA
V1vVad M3N "O4 ¥3ldILN3al -
036 /"] NOILYDO1 138 VIVaVLIN ININGFLIA 216 \
13S VIVavLIw
y NI INNTOA A3I4ILNIAl
NOILVOOT VAVAVLIN A3NINY3LIA ANV JNNTOA NI3IMLIE
1V 13S VIVAVL3N NI VIVA M3N NOILYIOOSSY IAONFY
\ 04 304NOS TYOINONYO SY Ve
ve6 INNTOA OL-NILLIMM HSIT9VLS3 896 %
304NOS TYOINONYO
v Y3HLO AJILN3AI OL
NOI9TY OL-NALLIYM (S)13S V1vav.L3n ININVXIE
e HLIM a31VIO0SSY 13S VIVav.L3W e
.m OL 43434 OL INNTOA OL-NILLIYM 96
Y04 90TVLYD INNTOA 3LvAdN

NOIOTY
d04 304dN0S

TYOINONYO
13S VIVAVLIN Q3LVIO0SSY AMVANODIS
| S3WNTOA AYYININD O3 INNOD O NILLIMM
096 EONENEEENFINENENSE e oONIag

) JNNTOA

¢S6

JINNTOA ALVINIYD ANY
o \ Va JINNTOA NIIMLIE |e
956

NOILYIODOSSY IAONWIY

US 9,075,535 B2

Sheet 11 of 13

Jul. 7, 2015

U.S. Patent

Vol 9l ao1s
N

é
NOIO3Y
d3HLONY

8101 ‘\

13S vivavlian

J1371dNOCD . _

NOIO3Fd F1IVNOIS3A

1IN

13S VIvavl3an d31vIOOSSY NI
NOD IDNIH343H INFNIFHD3A

304N0S
TYOINONYO SV INNTOA
d31d1LN3IAl F1¥NOIS3a

0L .\ \—,

JANNTOA d3141LN3AI
01 VIvd NOI93H AdOD

ovor - ﬁ

13S Vivavian
d0O4 H3141LN3Al
d04 SOOTVLYO
JNNTOA ANINVXE

oo,

000} \

820l S

Y201

ceol

NOIO3Y
404
304N0S

TYOINONVO

JANTOA

¢
NOIO3Fd H04
304N0S
TYOINONVYO
43HLONY

d3aLvioossy 31313d

910l S

NOIO3H
NI V1vd
NO dN3d3d
JAINTOA
d3H10

A v 3 JNNTOA 40
NOID3Y 103138
800} \

A

Y001

US 9,075,535 B2

Sheet 12 of 13

Jul. 7, 2015

U.S. Patent

d0l oOld

13S V1vavli3anw
NI IANTOA A3IFILNIAI ANY |

304N0S

JNNTOA NIIML3g
NOILVYIOOSSY IAONTYH

9/01 \

y

(O)e—

INNTON AUVINIEAD HLIM
d31vIOOSSY 13S VIVAVIIN NI
1INNOOD FONIIT43d LNINIHO3A

\
0901 \

334NOS TYOINONVYO SI AINVI1O
ONIFg JANNTOA ONILVOIANI
13S V1vavlian IAON3IA

N
9501 S

(8)13s vivavli3an

HO4 ANNTOA IDHNOS TYIINONYD
AUYINIYA ANV NOID3Y JWNTOA
NIIMLIG NOILVIOOSSY IAOWIY

0001 \

20,

TYOINONVO SY JNNTOA
d31diIN3Al 31vNOIS3a

N
2.0l \

JNNTOA d3141LN3AI
40 NOI©3d d310313S H04
13S v1ivavliIn JA0ONTS

A
go0, —/

JDUNOS TYOINONYD
H3IHLO A4ILNIAI OL
(S)13S VIvavLlaw ININYXI

901 S

NOIO3Y
404 304dN0S
TYOINONVYO
AdVANOD3IS
d3aNv3aio

ONI3g

JNNTOA
810l

US 9,075,535 B2

Sheet 13 of 13

Jul. 7, 2015

U.S. Patent

A=

0011
Vil
VIVAVLIW IAVOSYD
IE11 /
vivd atem - 9ELL 0zl ~ |
— INTLSAS O/l
\\ pELL
HIADYNYIN dNMOVE
\ — ovLL \
Gell - zeLl
(SINOILYDITddY |1
W3LSAS ONLLYHIAO |\ / 0SLL
€eLl | ¥0ss300ud
oLLL
SNOILONYLSNI
AIOWIN
INTLSAS U3LNdNOD

US 9,075,535 B2

1

SOURCE CLEANING CASCADED VOLUMES
USING REFERENCE COUNTS

BACKGROUND

The present invention relates to managing computer data,
and more specifically to cleaning cascaded volumes.

It is common for a storage system to have a disk backed up
in the case of loss due to hardware malfunction and/or natural
disaster. A backup disk may be created by various techniques.
For example, a backup disk may be made using snapshot or
cloning techniques.

A snapshot is a point-in-time copy that is dependent on the
primary disk. A snapshot may, for example, be accomplished
using a copy-on-write procedure, in which currently existing
data in a region on the primary disk is written to the backup
disk when a write is being made to the region on the primary
disk. Thus, the backup disk will contain data that has been
overwritten on the primary disk, as opposed to a complete
copy of the primary disk. This type of backup copy typically
results in a thinly provisioned volume, which reduces storage.
A series of snapshot copies may be cascaded together to
represent the primary disk at various times. However, the
snapshot copies typically remain dependent on the primary
disk to reassemble a complete copy of the primary disk.

A clone is a point-in-time copy that is independent of the
primary disk. A clone may, for instance, be created by execut-
ing a background copy procedure in which a disk’s regions
are sequentially copied to the backup disk and executing a
copy-on-write procedure to immediately copy any primary
disk regions that are about to be overwritten due to a write and
have not yet been processed by the background copy proce-
dure. A clone is typically used when a copy is needed and
input/output (IO) to the copy must not impact 10 to the
primary volume in any way. A clone may also be used when
the copy is not to be affected by availability to the source. A
clone may also be used in a cascade.

BRIEF SUMMARY

In one implementation, a process for source cleaning cas-
caded volumes may include storing a primary volume and a
number of cascaded backup volumes for the primary volume,
receiving writes for at least one of the volumes from an
external source, and preparing the writes for storage. The
process may also include determining whether a write is for a
volume region that is a canonical source and, if the write is for
a region that is not a canonical source, decrementing a refer-
ence count in a metadata set associated with the region, deter-
mining a metadata set location identifier, establishing the
volume of the region as a canonical source for a metadata set
associated with the metadata set location identifier, and estab-
lishing a reference count for the metadata set to indicate that
the metadata set is referred to by one volume region. The
process may further include examining, if the write is for a
region that is a canonical source, a metadata set associated
with the region to determine whether another volume depends
on data in the region and writing the new data to the region if
another volume does not depend on data in the region.

The details and features of various implementations will be
conveyed by the following description, along with the draw-
ings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an example system
for source cleaning cascaded volumes.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 is aline drawing illustrating example cascade meta-
data for source cleaning cascaded volumes.

FIG. 3 is aline drawing illustrating example cascade meta-
data for source cleaning cascaded volumes.

FIG. 4 is aline drawing illustrating example cascade meta-
data for source cleaning cascaded volumes.

FIG. 5 is aline drawing illustrating example cascade meta-
data for source cleaning cascaded volumes.

FIG. 6 is aline drawing illustrating example cascade meta-
data for source cleaning cascaded volumes.

FIG. 7 is aline drawing illustrating example cascade meta-
data for source cleaning cascaded volumes.

FIG. 8 is a line drawing illustrating example cascade meta-
data for source cleaning cascaded volumes.

FIGS. 9A-B is a flowchart illustrating an example process
for source cleaning cascaded volumes.

FIGS. 10A-B is a flowchart illustrating another example
process for source cleaning cascaded volumes.

FIG. 11 is a block diagram illustrating an example com-
puter system for source cleaning cascaded volumes.

DETAILED DESCRIPTION

Source cleaning cascaded volumes may be achieved by
various techniques. In particular implementations, the cas-
caded volumes may include a primary volume and a number
of'cascaded backup volumes. Source cleaning of the cascaded
volumes may include determining tracking establishing and
tracking dependencies between the volumes. The dependen-
cies may, for example, be logged in metadata sets on a per
volume region basis. Tracking the dependencies may reduce
the number of intervolume copies as it may be determined
whether there are sources for data that is about to overwritten
and, if there are, any dependencies may be remapped. When
one of the volumes needs to be cleaned (e.g., because it is
being removed or restarted), the cascade metadata may be
analyzed to determine which data on the volume to be cleaned
needs to be moved to another volume to maintain the data
integrity of the remaining volume.

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be implemented as a system,
method, or computer program product. Accordingly, aspects
of the present disclosure may take the form of an entirely
hardware environment, an entirely software embodiment (in-
cluding firmware, resident software, micro-code, etc.), or an
implementation combining software and hardware aspects
that may all generally be referred to herein as a “circuit,”
“module,” or “system.” Furthermore, aspects of the present
disclosure may take the form of a computer program product
embodied in one or more computer readable medium(s) hav-
ing computer readable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of' a computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.

US 9,075,535 B2

3

In the context of this disclosure, a computer readable storage
medium may be a tangible medium that can contain or store a
program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc. or
any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the disclosure may be written in any combination
of one or more programming languages such as Java, Small-
talk, C++ or the like and conventional procedural program-
ming languages, such as the “C” programming language or
similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer, or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the disclosure are described below with refer-
ence to flowchart illustrations and/or block diagrams of meth-
ods, apparatus (systems), and computer program products
according to implementations. It will be understood that each
block of the flowchart illustrations and/or block diagrams,
and combinations of blocks in the flowchart illustrations and/
or block diagrams, can be implemented by computer program
instructions. These computer program instructions may be
provided to a processor of a general purpose computer, spe-
cial purpose computer, or other programmable data process-
ing apparatus to produce a machine, such that the instruc-
tions, which execute via the processor of the computer or
other programmable data processing apparatus, create means
for implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other device to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions that implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus, or other devices to produce a computer implemented
process such that the instructions that execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 illustrates an example system 100 for source clean-
ing cascaded volumes. System 100 includes an external sys-
tem 110, a storage system 120, and a communication network
130.

External system 110 may generally be any computer sys-
tem that has some of its data stored by generating writes to
storage system 120. External system 110 may, for example,
be a server system generating data that needs to be stored.
Example server systems include Web servers. If the external
system is a server system, the server system may include one
or more servers, which may be co-located or distributed.

Storage system 120 may store data for various external
systems (e.g., server systems running Advanced Interactive
eXecutive (AIX) or Windows), which may be local or remote
from the storage system. In particular implementations, stor-
age system 120 may provide the primary storage for the
example system while other storage systems (not illustrated)
provide disaster recovery storage (e.g., by synchronous or
asynchronous replication). Storage system 120 may, for
example, include storage area networks, raid arrays, hard
drives, tape drives, or any other device for storing data. Stor-
age system 120 may, for instance, store data in a block array
format.

Storage system 120 includes a storage controller 122 and
storage 124 (e.g., a hard disk, a tape, etc.). Storage controller
122 is responsible for placing data in storage 124. For the sake
of'discussion, storage 124 includes a primary volume 125 and
backup volumes 126 for the primary volume. However, stor-
age 124 may typically be configured to include any number of
volumes. Volumes 125-126 may, for example, be actual
physical devices in storage 124 (e.g., hard drives), portions of
physical devices, or representations of physical devices. Stor-
age 124 may also have a number of other volumes that it is
storing.

External system 110 and storage system 120 are commu-
nicatively coupled to each other through communication net-
work 130. Communication network 130 may, for example, be
a local area network (LAN), a wide area network (WAN), or
the Internet. External system 110 and storage system 120 are
coupled to communication network 130 through communi-
cation links 132, which may include one or more wireline
(e.g., cable or fiber optic) and/or wireless links (e.g., radio
frequency).

Backup volumes 126 may provide backup of primary vol-
ume 125 by various techniques. For example, backups may be
made using snapshot and/or cloning techniques. As men-
tioned previously, a snapshot may be a point-in-time copy in
which currently existing data in a region on a primary volume
is written to a backup volume when a write is being made to
the region on the primary volume. Thus, the backup volume
will contain data that has been overwritten on the primary
volume, as opposed to a complete copy of the primary vol-
ume, and will generally remain dependent on some ofthe data
on the primary volume (e.g., the data that has not been
changed) in order to present the copy. A region may, for
example, be a sector or other addressable portion ofa volume.
In particular implementations, a region may be approxi-
mately 64 KB in size.

This type of backup copy typically results in a thinly pro-
visioned volume, which reduces storage, and may be useful in
the event of data corruption on the primary volume. Often,
there are many snapshots of a single source existing concur-
rently, so their reduced size is beneficial. A snapshot may
exist in a cascade of volumes for a considerable amount of
time (e.g., months or years), but is typically only kept for
hours or days.

US 9,075,535 B2

5

A clone copy is a point-in-time copy in which the backup
volume should end up holding a complete copy of the data
that was on the primary volume when the copy was started. A
clone copy may, for example, be created by executing a back-
ground copy procedure in which a primary volume’s regions
are sequentially copied and executing a copy-on-write proce-
dure to immediately copy any volume regions that are about
to be overwritten due to a write and have not yet been pro-
cessed by the background copy procedure. A clone copy is
typically used when a copy is needed and input/output (IO) to
the copy must not impact 1O to the primary volume in any
way. A clone copy may also be used when the copy is not to
be affected by availability to the source. That is, a clone copy
may be removed from the cascade and still function properly.
For example, a clone copy may be used to take a database to
another site. A clone copy is often copied to tape once it is
complete.

Backup volumes 126 may provide backup for primary
volume 125 by being cascaded with each other. In a cascade,
the backup volumes may store multiple point-in-time copies
of a single data source. This approach works such that when
a new backup volume is started, an existing backup volume
using the primary volume as its source volume is modified to
use the target volume of the new backup as its source volume.

For example, for the illustrated implementation, suppose
that it is desired to take a point-in-time copy of primary
volume 125 at times T1, T2 and T3. At time T1, a point-in-
time copy using target backup volume 1264 may be used,
resulting in a cascade of primary volume 125->backup vol-
ume 1264 (hereinafter denoted as PV->BVa). Then, at time
T2, a point-in-time copy using backup volume 1265 may be
used, resulting in a cascade of PV->BVb->BVa. This arrange-
ment works because if data has been changed on backup
volume 126a or primary volume 125 between T1 and T2, the
data will be on backup volume 126a, and if the data has not
been changed, then both the backup volume 1264 and backup
volume 1265 can read the same data. Similarly, at T3, a
point-in-time copy using backup volume 126¢ may be started,
resulting in a cascade of PV->BVc->BVb->BVa. Storage
controllers such as SAN Volume Controller FlashCopy from
International Business Machines of Armonk, N.Y. may use a
cascading implementation to augment source volumes with
backup volumes.

Assuming backup volume 1264 operates by a snapshot
technique, backup volume 1264 provides backup by storing
the changes to primary volume 125 since the backup began at
T1. In this two element cascade, primary volume 125 is the
source, and backup volume 126a is the target. Primary vol-
ume 125 may therefore be referred to as the effective source
of the PV->BVa map.

As mentioned previously, this backup may be accom-
plished by using copy-on-write. Thus, a write to primary
volume 125 may involve copying the data in the region to be
written to on primary volume 125 to backup volume 1264 and
then writing the new data to the copied region of primary
volume 125. Thus, the data that was on primary volume 125
when the backup to backup volume 1264 became active at T1
will be stored on primary volume 125 (i.e., for the volume
regions that have not been written to) and on backup volume
126a (i.e., for the regions that have been written to).

If a read needs to be performed on backup volume 1264
(e.g., to determine data on primary volume 125 at T1), the
read may proceed by first attempting to locate the data backup
volume 1264. If the data is not on that volume (i.e., because it
was never overwritten on primary volume 125), the data may
be read from primary volume 125.

10

15

20

25

30

35

40

45

50

55

60

65

6

Primary volume 125 may on occasion need to be restored
to its state at T1. For example, this may occur due to a data
corruption. The data that has been overwritten on primary
volume 125 since backup volume 1264 became active may be
retrieved from backup volume 1264 to restore primary vol-
ume 125 to its state at T1.

At a later point in time, T2, the backup to backup volume
1265 may become active and store a representation of pri-
mary volume 125 beginning at T2. At this point, it is no longer
necessary to update backup volume 1264« as backup volume
1264 will contain the data of primary volume 125 at T2. Thus,
the backup chain becomes primary volume 125->backup vol-
ume 1265->backup volume 1264 (or PV->BVb->BVa). And
now the map for primary volume 125->backup volume 1264
has source backup volume 1265 as the effective source. This
transformation is valid because backup volume 1265 is an
exact copy of primary volume 125 at this point in time (at least
for the data regions that it stores).

Backup volume 1265 may operate by snapshot or cloning
techniques. If it operates by a snapshot technique, writes to
primary volume 125 may be treated as they were for the
PV->BVa cascade, except that the data being overwritten on
primary volume 125 will be placed on backup volume 1265.
If backup volume 1265 operates by a cloning technique,
regions of primary volume 125 will be written to backup
volume 1265 by a combination of sequential reading, which
may take a relatively long period of time, and on-demand
writes (e.g., due to data being overwritten by writes to pri-
mary volume 125).

In order to maintain the data for this cascade, an 10 algo-
rithm may be used. For example, for reads: 1) if a read of
backup volume 126a is requested, read backup volume 1264
if the requested data is on that volume (e.g., according to
region), else read backup volume 12654 if the requested data is
on that volume, else read primary volume 125; 2) if a read of
backup volume 1265 is requested, read that volume if the
requested data is on that volume, else read primary volume
125; and 3) if a read of primary volume 125 is requested, read
that volume.

For writes: 1) if a write to backup volume 126a is
requested, write to that volume; 2) if a write to backup volume
1265 is requested: a) if backup volume 1264 needs data held
on primary volume 125 (e.g., because the data on primary
volume 125 and backup volume 126 are the same for the
written-to region), then read the primary volume, write the
result to backup volume 1264, and write the new data to
backup volume 1265; b) else if backup volume 1264 needs
data held on backup volume 12654, then read backup volume
1264, write the result to backup volume 1264, and write the
new data to backup volume 1265; or c¢) else write to backup
volume 1265; and 3) if a write to primary volume 125 is
requested: a) if backup volume 1265 needs the data held on
primary volume 125, read primary volume 125, write the
result to backup volume 1265, and then write the new data to
primary volume 125; and b) else write to primary volume 125.

This IO algorithm allows multiple targets (e.g., two or
more) to be cascaded. Moreover, a write to primary volume
125 results in at most one extra write to a backup volume
irrespective of the number of backup volumes for primary
volume 125. Thus, the impact of the backup maps on the
source/production IO performance is relatively small and also
bounded.

At some point after T2, backup volume 1264 is typically
dependent on backup volume 1265. For example, if a data
region was not transferred to backup volume 126a between
T1 and T2 (e.g., because there was no write to primary vol-
ume 125 during that time) but was transferred to backup

US 9,075,535 B2

7

volume 1265 after T2 (e.g., because there was a write to
primary volume 125 after T2), backup volume 126a would
need this data to restore primary volume 125 to its state at T1.

If backup volume 12654 is to be removed from the cascade
after this point without affecting backup volume 126a,
backup volume 1265 should be cleaned. That is, the data on
backup volume 127 that is needed for reads (e.g., from an
external system) to backup volume 1264 must first be copied
to backup volume 126a. This process can take a relatively
long time. Moreover, if backup volume 1265 was constructed
by a clone technique, which may have resulted in backup
volume 1265 becoming fully allocated, and backup volume
126a was constructed by a snapshot technique, the cleaning
operation may determine that most of backup volume 1265
needs to be transferred to backup volume 126a, which can
dramatically increase the amount of data being stored on
backup volume 1264, especially if it becomes fully allocated.

At a later point in time, T3, the backup to backup volume
126¢ may become active and store a representation of primary
volume 125 beginning at T3. At this point, it is no longer
necessary to update backup volume 1265 as backup volume
126¢ will contain the data of primary volume 125 at T3. Thus,
the backup chain becomes primary volume 125->backup vol-
ume 126¢->backup volume 126b->backup volume 1264
(hereinafter also denoted as PV->BVc->BVb->BVa). And
now the map for PV>BVb->BVa has source backup volume
126c as the effective source. This transformation is valid
because backup volume 126¢ is an exact copy of primary
volume 125 at this point in time (at least for the data regions
that it stores).

Backup volume 126¢ may operate by snapshot or cloning
techniques. If it operates by a snapshot technique, writes to
primary volume 125 may be treated as they were for the
PV->BVb->BVa cascade, except that the data being overwrit-
ten on primary volume 125 will be placed on backup volume
126¢. If backup volume 126¢ operates by a cloning technique,
regions of primary volume 125 will be written to backup
volume 126¢ by a combination of sequential reading, which
may take a relatively long period of time, and on-demand
writes (e.g., due to data being overwritten by writes to pri-
mary volume 125).

In order to maintain the data for this cascade, an 1O algo-
rithm may be used. For example, for reads: 1) if a read of
backup volume 126a is requested, read backup volume 1264
if the requested data is on that volume (e.g., according to
region), else read backup volume 12654 if the requested data is
on that volume, else read backup volume 126c¢ if the request
data is on that volume, else read primary volume 125; 2) if a
read of backup volume 1265 is requested, read that volume if
the requested data is on that volume, read backup volume
126¢ if the request data is on that volume, else read primary
volume 125; 3) if a read of backup volume 126¢ is requested,
read that volume if the requested data is on that volume, else
read primary volume 125; and 4) if a read of primary volume
125 is requested, read that volume.

For writes: 1) if a write to backup volume 126a is
requested, write to that volume; 2) if a write to backup volume
1265 is requested: a) if backup volume 1264 needs data held
on primary volume 125, meaning that the written-to region is
the same for primary volume 125 and backup volumes 126,
then read the primary volume, write the result to backup
volume 1264, and write the new data to backup volume 1265;
b) else if backup volume 1264 needs data held on backup
volume 126¢, meaning that the written-to region is the same
for backup volumes 126, then read backup volume 126¢,
write the result to backup volume 1264, and write the new
data to backup volume 1265; c) else if backup volume 1264

20

25

30

40

45

55

8

needs data held on backup volume 1264, then read backup
volume 1264, write the result to backup volume 1264, and
write the new data to backup volume 1265; or d) else write to
backup volume 1265, 3) if a write to backup volume 126c¢ is
requested: a) if backup volume 1265 needs data held on
primary volume 125, meaning that the written-to region is the
same for primary volume 125 and backup volumes 1265-c,
then read primary volume 125, write the result to backup
volume 12654, and write the new data to backup volume 126¢
(if backup volume 1264 needs data held on primary volume
125, then there must be an unbroken cascade of dependencies
from backup volume 126a to primary volume 125, meaning
the written-to region was the same for all the volumes and
backup volume 1265 would depend on the region too); b) else
if backup volume 1265 needs data held on backup volume
126¢, then read backup volume 126¢, write the result to
backup volume 1264, and write the new data to backup vol-
ume 126¢ (if backup volume 1264 needs data held on backup
volume 126c¢, then there must be an unbroken cascade of
dependencies from backup volume 1264 to backup volume
126¢, meaning the written-to region was the same for the
backup volumes 126 and backup volume 1265 would depend
on the region too); or ¢) else write to backup volume 126¢; or
4) if a write to primary volume 125 is requested: a) if backup
volume 126c¢ needs the data held on primary volume 125, read
primary volume 125, write the result to backup volume 126¢,
and then write the new data to primary volume 125; and b)
else write to primary volume 125.

This 10 algorithm allows multiple targets (e.g., three or
more) to be cascaded. Moreover, a write to primary volume
125 results in at most one extra write to a backup volume
irrespective of the number of backup volumes for primary
volume 125. Thus, the impact of the backup maps on the
source/production IO performance is relatively small and also
bounded.

At some point after T3, backup volume 1265 is typically
dependent on backup volume 126¢. For example, if a data
region was not transferred to backup volume 1265 between
T2 and T3 (e.g., because there was no write to primary vol-
ume 125 during that time) but was transferred to backup
volume 126¢ after T3 (e.g., because there was a write to
primary volume 125 after T3), backup volume 1265 would
need this data to restore primary volume 125 to its state at T2.

If backup volume 126c¢ is to be removed from the cascade
after this point without affecting backup volume 1265,
backup volume 126¢ should be cleaned. That is, the data on
backup volume 126c¢ that is needed for reads (e.g., from an
external system) to backup volume 1265 must first be copied
to backup volume 12654. This process can take a relatively
long time. Moreover, if backup volume 126¢ was constructed
by a clone technique, which may have resulted in backup
volume 126¢ becoming fully allocated, and backup volume
1265 was constructed by a snapshot technique, the cleaning
operation may determine that most of backup volume 126c¢
needs to be transferred to backup volume 1265, which can
dramatically increase the amount of data being stored on
backup volume 1264, especially if it becomes fully allocated.

In certain modes of operation, the regions of data on the
volumes may be classified to determine if the data stored in
the regions must be cleaned or whether the data is still acces-
sible (e.g., on primary volume 125) to the dependent volume
(e.g., backup volume 1264a) even when an intervening volume
(e.g., backup volume 1265) is removed.

Storage controller 122 includes cascade metadata 123 that
may store data regarding the regions on volumes 125-126. In
particular, cascade metadata 123 may define whether a

US 9,075,535 B2

9

region’s data is a source for other regions on other volumes or
dependent on other regions of other volumes.

Looking further at the PV->BVc->BVb->BVa cascade
described above, consider what happens to the targets when
they are written to. For this example, assume that backup
volumes 126 are thinly provisioned (e.g., storage is only
allocated for regions that have been written to) because that
illustrates several issues well. Primary volume 125 is
assumed to be fully provisioned, as this is the most common
configuration.

If a region is written to on primary volume 125, the write
causes no space to be allocated on the primary volume, but it
requires the same region to be allocated on backup volume
126¢ as the copy-on-write procedure moves the existing data
from primary volume 125 to backup volume 126¢ in the
cascade. A write to a region on backup volume 126¢ causes
that region to be allocated on backup volume 126¢ (for the
new write) and also on backup volume 1265 for the existing
data on primary volume 125 that backup volume 126¢ used to
depend on and backup volume 1265 still depends on. Like-
wise, a write to a region on backup volume 1265 causes that
region to be allocated on backup volume 1265 and backup
volume 126a. A write to a region on backup volume 1264
only causes that region on backup volume 1264 to be allo-
cated.

At a later point in time, one of the backup volumes may
need to be removed from the cascade. For example, the stor-
age of a backup volume may be needed to be used for a
different purpose (e.g., a point-in-time copy may need to be
refreshed with a later copy).

For example, if backup volume 1265 needs to be removed
from the cascade at a later time, the regions that backup
volume 1264 depends on from backup volume 1265 should
be copied to backup volume 126a before backup volume
1265 is removed from the cascade and used for a different
purpose. Following the removal of backup volume 1265,
regions will have been allocated on backup volume 1264 from
any writes to backup volumes 126a-c, regardless of whether
there is an already-allocated region earlier in the cascade that
contains the data needed for backup volume 1264. This addi-
tional allocation requirement tends to have significant cost,
with extra physical storage required, along with extra system
management, and the physical space, electricity and cooling
costs that come with it. It also means that the storage is being
accessed more often than it needs to, copying the data down
the cascade unnecessarily. This increased in-storage access
may lower the performance of the system significantly as
every copy needed to update a volume further down the cas-
cade with data it depends on will turn a single write into a read
and two writes, potentially decreasing the total number of
writes per second that the storage system will support to
one-third that which it would support on a volume that was
not requiring such a copy.

It backup copies 126a-c were fully provisioned, instead of
thinly provisioned, the additional copying of the data will
only generate the performance impact, not the storage impact,
as the entire volume is already allocated.

Storage system 120 may use cascade metadata 123 for the
volume 125-126 to overcome these issues. In particular, cas-
cade metadata 123 may be a set of location details regarding
the data stored on the volumes in the cascade and the volume
regions that rely on that data. The metadata may be available
across storage system 120.

Cascade metadata 123 may include sets of data such that
each set includes an identifier for a volume, an identifier for a
region within the volume, and a reference count for the data
stored in the region of the volume. Each set may be addressed

10

15

20

25

30

35

40

45

50

55

60

65

10

through a unique identifier. In certain implementations, for
example, the unique identifier may be a number, which could
be 64 bits in length, or larger, to avoid reuse issues. The
metadata may be stored as an array, a linked list, a hash table,
a tree, or any other method that allows the system to locate a
data set from the unique identifier. Each set may refer to a
region of storage being point-in-time copied by the storage
system, and thus, there may be enough of these entities to
satisfy the requirements for the amount of storage that may be
point-in-time copied.

Beginning with a single volume, PV, such as primary vol-
ume 125, which may be an ordinary volume (e.g., an array of
logical blocks), when the volume is created in a storage sys-
tem, an additional set of metadata, which will hereafter be
referred to as a volume catalog, is allocated that is large
enough to store one of the unique identifiers for each region of
the volume. For each region of the volume, the volume cata-
log can be allocated a metadata set. Any common method
may be used to support this, such as maintaining a list of the
free, or currently unused, metadata sets. The metadata set
allocated for a region may store that region’s volume identi-
fier, the region’s location in the volume, and the reference
count for the data in that region, which would be set to one at
this point as it is being used once. The unique identifier for the
metadata set for that region’s entry may be stored in the
volume catalog.

Thus, to determine the location of the metadata set for a
given region on the primary volume, the region’s entry in the
volume catalog may be found, which provides the unique
identifier with which to look up the appropriate metadata set,
which in turn gives the volume identifier and location within
the volume. Of course, with a single standalone volume, this
will typically refer back to the same region on the primary
volume. Thus, for a single volume not involved in a point-in-
time copy, setting up this metadata could be deferred until the
volume is involved in a point-in-time copy for the first time.

FIG. 2 illustrates example cascade metadata 200 for a
single volume, such as primary volume 125. As illustrated,
metadata 200 includes metadata sets 210 and a volume cata-
log 220.

Metadata sets 210 are illustrated in a tabular form that
includes three columns 212. Column 212a includes a volume
identifier, column 2125 includes a volume location (e.g., a
region number), and column 212¢ includes a reference count
for the region data. Thus, each row of the table forms a tuple
for a volume region and may be uniquely addressed (e.g.,
through the use of a row number).

Volume catalog 220 is also illustrated in a tabular form,
which includes a single column 222. Column 222 contains
location identifiers for metadata sets 210. That is, each iden-
tifier in volume catalog 220 identifies a particular metadata
set 210. To simplify the illustration, each identifier in volume
catalog 220 is an integer that directly corresponds to a meta-
data set 210. Other identification schemes may also be used.
Additionally, each entry in volume catalog 220 directly cor-
responds to a region on the volume. In this example, the first
entry corresponds to region zero, the second entry corre-
sponds to region one, the third entry corresponds to region
two, and the fourth entry corresponds to region three. In other
implementations, associations other than direct ones may be
used in a volume catalog.

When the first copy is taken from the primary volume PV
onto the first backup volume BVa, such as backup volume
1264, a volume catalog is also allocated for the backup vol-
ume. Each entry in the backup volume’s catalog is initialized
to the same value as that in the matching entry in the primary
volume’s catalog, and the reference count for that region in

US 9,075,535 B2

11

the associated metadata set is incremented. In this case, the
reference count will increase to two, as there are now two
regions that rely on the underlying data. Determining the
location of a region of the backup volume will occur as
described previously for the primary volume, which will cur-
rently refer to the matching region on the primary volume.

FIG. 3 illustrates an example set of cascade metadata 300
for a primary volume, such as primary volume 125, and a first
backup volume, such as backup volume 126a. As illustrated,
metadata 300 includes metadata sets 210, primary volume
catalog 220, and a first backup volume catalog 230. As just
mentioned, first backup volume catalog 230 has been added
due to the first backup volume, and its regions, represented
here by rows, are mapped to the same metadata sets as the
primary volume’s regions. Furthermore, the reference counts
in column 212¢ have been updated to reflect the activation of
the backup volume.

When a region is written to on the primary volume or the
first backup volume, the storage system checks the reference
count in the metadata set referred to by the volume catalog
entry for that region. As the copy has just been taken, the
reference count is at two, as illustrated in FIG. 3. Because this
value is greater than one, it can be determined that the write
will affect more than one copy. This may be done differently
depending on which volume the write is to be applied to. As
the data is actually stored on the primary volume, the primary
volume will be referred to as the canonical source for that
data. In this disclosure, a canonical source is a volume region
that is storing data. Entries in a volume catalog for volume
regions that do not store data refer to a canonical source for
that data on a different volume. The canonical source can be
determined by identifying which volume the metadata set
refers to. In the figures, canonical sources are shaded grey in
the volume catalogs to facilitate understanding.

If the write is to be applied to a volume that is not the
canonical source (e.g., the first backup volume in FIG. 3), it
can be determined that the physical storage on the volume for
that region is not being used for this or any other volume
because the associated metadata set does not refer to the
volume being written to. Thus, the write may be made to the
volume without copying data to a different volume. The write
may then be applied to the volume.

Any merging of the data with the data on the canonical
source if the write does not cover an entire region may pro-
ceed as normal with a copy-on-write solution. For example, if
awrite is to a region 128 sectors long but spans sectors 20-49
in the region, sectors 0-19 and 50-127 should be read from the
canonical source, merged with sectors 20-49 for the new
write, and then all 128 sectors written out. A complete
region’s worth of data should be created for the volume that’s
not the canonical volume.

Before completing the write to the external system that sent
the write to the storage system, the associated metadata set
and the volume catalog must be updated. As the volume will
now contain different data on the written to region, the storage
system may allocate a new metadata set for it. This new
metadata set is initialized with the volume and region the
write was applied to. Additionally, the reference count for the
metadata set previously referred to by the volume catalog for
that region is decremented, the volume catalog for the writ-
ten-to volume is updated to refer to the newly-allocated meta-
data set, and the newly-allocated metadata set’s reference
count is set to one. These three operations may be journalled
and replayed if interrupted, or otherwise made atomic, to
ensure that the reference counts remain consistent. This
results in the just-written region becoming a canonical
source.

35

40

45

55

12

FIG. 4 illustrates how cascade metadata 300 would be
updated for this process. In this example, a write was applied
to the second region (i.e., region one) of the primary volume
and the third region (i.e., region two) of the backup volume,
although only the latter will be discussed presently. The write
to the third region of the backup volume has resulted in the
storage system modifying the metadata set for the third region
of the primary volume and generating a metadata set for the
third region of the first backup volume. In particular, the
metadata table set entry associated with the third region of the
primary volume now indicates that the reference count has
been decremented to one. Additionally, the third region of the
first backup volume has been assigned a new identifier (i.e., 5)
in volume catalog 230, and upon inspecting metadata sets
210, it can be seen that the corresponding metadata set (i.e.,
the fifth one), indicates that the associated volume is the first
backup volume, the associated region on the volume is the
third one (i.e., region two), and the reference count is one.

If, instead, the write was applied to the canonical source
(i.e., the primary volume in the example in FIG. 3), and the
reference count is greater than one, the storage system may
determine that the data on that region of the primary volume
is required by at least one other volume, and the data should
be copied to another volume. The storage system may exam-
ine the list of volumes in order in the cascade to find the first
volume after the canonical source in the cascade that has a
reference to the associated metadata set in the matching entry
in its volume catalog. In this case, this will be the first backup
volume, as it is the only other volume in the cascade. The data
for that region is then copied from the canonical source to the
backup volume (i.e. the primary volume to the first backup
volume), and the metadata set is updated to point to the found
backup volume, making it the new canonical source. As the
old canonical source is now no longer the canonical source, its
data may be changed without any other volumes in the cas-
cade being affected, so operations may continue as described
previously. That is, a new volume catalog entry may be allo-
cated for the newly written region.

FIG. 4 also illustrates how cascade metadata 300 would be
updated for this process. In this example, a write was also
applied to the second region (i.e., region one) of the primary
volume. The write to the second region of the primary volume
has resulted in the storage system updating the associated
metadata set (i.e., the second one) to point to the found
backup volume, making it the new canonical source, and
allocating a new volume catalog entry for the second region of
the primary volume since it is no longer the canonical source,
which appears as the sixth metadata set 210.

There may be as many canonical sources for a given region
across a cascade as there are different sets of data. For
example, if the PV->BVc¢->BVb->BVa cascade has been
modified on the primary volume and the first backup volume,
the primary volume, the first backup volume, and the third
backup volume will be canonical sources for that region.
There is one canonical source for each metadata set.

FIG. 5 illustrates example cascade metadata 500 for a
primary volume and three backup volumes. In particular,
cascade metadata 500 begins with the data as established by
cascade metadata 300 in FIG. 4 and then two more backup
volumes are added, with their volume catalogs being labeled
540 and 550.

As is typical for cascaded point-in-time copies, the new
backup volumes of the primary volume were each inserted in
the cascade immediately following the primary volume, to
correctly represent the dependencies between the copies. As
before, volume catalogs 540, 550 were each initialized with
the contents of the primary volume’s catalog at the time. In

US 9,075,535 B2

13

this example, the primary volume did not receive any writes
between the time the point-in-time copy from the primary
volume to the second backup volume was triggered and the
time the point-in-time copy from the primary volume to the
third backup volume was triggered. Thus, the volume cata-
logs 520, 540, 550 are identical. Additionally, the reference
counts were adjusted in the table 510 to reflect the fact that
additional volumes depend on the data.

FIG. 6 illustrates cascade metadata 500 when a write has
been applied to the fourth region of the primary volume and
the fourth region of the first backup volume. The write to the
fourth region of the primary volume causes the storage con-
troller to move the data at that region to the third backup
volume. Thus, the fourth metadata set 510 has been adjusted
to make the volume identifier identify the third backup vol-
ume as the canonical source for this data now. Moreover, the
reference count for this data has been decreased by one since
a volume (i.e., the primary volume) no longer relies on it.
Additionally, another metadata set 510 has been created for
the data written to the primary volume. This entry appears as
the seventh metadata set 510 and indicates that the primary
volume is the canonical source for this data, the data is located
at the fourth region (i.e., region three) of the primary volume,
and only one volume is depending on this data. The fourth
entry in the primary volume’s catalog 520 was also changed
to include an identifier that indicates the seventh metadata set
510. Thus, the new metadata set for the first backup volume
can be found from its volume catalog. There is no change in
the identifier for the region data on the second backup volume
or the third backup volume, so there were no changes made to
volume catalogs 540, 550.

The write to the fourth region of the first backup volume
causes the data at that region to be overwritten. (There is no
copy-on-write, as there is no further volume in the cascade.)
Thus, the fourth metadata set 510 has been adjusted to make
the reference count for this data decrease by one since a
volume (i.e., the first backup volume) no longer relies on it.
Additionally, a metadata set was created for the data written to
the first backup volume. This entry appears as the eighth
metadata set 510 and indicates that the first backup volume is
the canonical source for this data, the data is located at the
fourth region of the volume (i.e., region three), and only one
volume is depending on this data. The fourth entry in the first
backup volume’s catalog 530 is also changed to include an
identifier that indicates the eighth metadata set 510.

If a region is written to for which the associated metadata
set’s reference count is one, the write can proceed normally,
without any changes to the volume catalog or the metadata
set, as the data is changing on the only volume referring to this
region. This would happen, for example, if the second region
(i.e., region one) on the first backup volume was written to in
FIG. 6, or any other region with a reference count of one.

As mentioned previously, there is one canonical source for
each metadata set. Thus, the canonical source may be deter-
mined on a region-by region basis. This can, for example, be
seen for the fourth region of the four volume cascade in FIG.
6, which has three canonical sources.

It a volume is deleted (for example, the primary volume or
one of the backup volumes need to be deleted to reclaim their
storage), for each entry in the associated volume catalog, the
reference count is decremented in the associated metadata set.
If the reference count reaches zero, the storage system may
determine that it is deleting the only volume that needs that
data, and, hence, no further action is needed. This would, for
example, happen for the fourth region of the primary volume
in FIG. 6 if that volume were deleted.

10

15

20

25

30

35

40

45

50

55

60

14

Ifthe count is non-zero, there are two options. If the volume
being deleted is not the canonical source, a different volume
contains the information that the surviving volume(s) need,
and, hence, no further action is needed. This would, for
example, happen for the fourth region of the second backup
volume if that volume were deleted. If the volume being
deleted is the canonical source for that region, the storage
system should copy the data to another volume. To accom-
plish this, the storage system may examine the list of volumes
in order in the cascade to find the first volume after the
canonical source that currently has a reference to this meta-
data set in the associated entry in its volume catalog. The data
for that region is then copied from the canonical source to the
identified volume, and the metadata set is updated to point to
the identified volume, making that volume the new canonical
source. As the old canonical source is now no longer the
canonical source, it may be deleted without any other volume
in the cascade being affected. Thus, no further action is
needed for that region. This would, for example, happen for
the fourth region of the third backup volume if that region
were deleted, with the data being moved to the second backup
volume and that volume being made the canonical source.

Ifa copy is not deleted but instead restarted (e.g., to refresh
the volume with a more recent copy of the data), this may be
considered as a deletion of the copy, and copying of regions
for which this copy is the canonical source and the reference
count is greater than one may be performed. The copy may
then be added to the cascade anew, being reinserted in the
cascade immediately after the primary volume and with a
volume catalog initialized to the current contents of the pri-
mary volume’s catalog.

The write process can also provide a type of cleaning For
example, assume that a cascade has a primary volume and
three backup volumes—PV->BVc->BVb->BVa—and the
backup volume all refer to the same metadata set for which
the primary volume is the canonical source, giving it a refer-
ence count of four. If a write is performed to one of the
intermediate volumes (i.e., BVc or BVb), the write to the
volume may be performed without having to move data from
the primary volume to the volume downstream of the write
because the downstream volume still refers back to the pri-
mary volume. Thus, this process has performed smart clean-
ing by avoiding copying data unless the actual data (i.e., that
on the primary volume) is overwritten. The existing cascad-
ing point-in-time copy implementations typically copy (or
“clean”) data to the next downstream volume in the cascade if
it needed it, even if there is an upstream volume with the
required data available.

The example implementations above assume that there is
no background copy (e.g., the data in the PV->BVc¢->BVb-
>BVa cascade only gets copied when necessary). This is
commonly referred to a snapshot technique, which means that
the first backup volume will depend on the second backup
volume until the second backup volume is deleted or entirely
written to. This behavior is good for limiting the number of 1O
operations the storage system must perform to support the
cascade of volumes, and for thinly-provisioned volumes, it
limits the storage requirements. However, some copies may
need to have their own copy of the data for resilience or for
distributing the 10s of external systems amongst multiple
physical storage devices. These copies are commonly
referred to as clones.

A background copy process typically run for a clone rep-
licates the data from the source to that clone. Such a process
usually starts at one end of the volume and proceeds to the
other end. As the process copies each region, the clone is no
longer dependent on the source volume for that region.

US 9,075,535 B2

15

Assuming that the second backup volume in the PV->BVc-
>BVb->BVa cascade is a clone, as the background copy
process replicates regions from the primary volume to the
second backup volume, the second backup volume is no
longer dependent on the primary volume for the copied
regions. However, with current implementations, the first
backup volume is now dependent on the second backup vol-
ume for all those copied regions, and if the second backup
volume is then deleted, the system has to copy all the regions
from the second backup volume to the first backup volume,
even though the primary volume may still contain the same
data. This means that the first backup volume, which was
intended to only record a small set of changes, now has to
record a large portion of the volume (perhaps all of the vol-
ume, if the background copy process has made enough
progress).

The example implementation discussed above may be
extended to allow multiple canonical sources of each copy of
data. For example, a “next in chain” identifier may be added
to each metadata set. Thus, if a region has been background
copied, such that the same data exists on more than one
volume’s physical storage, an additional location detail
object may be allocated for the second volume with physical
storage, and the next-in-chain identifier of the first volume’s
metadata set may be set to the identifier for the second vol-
ume’s metadata set. The second volume’s metadata set is
initialized with the volume and location of the newly-copied
region. However, the reference count is not maintained for the
second volume’s metadata set as the first volume’s reference
count includes the copy. Metadata sets that do not have alter-
nate canonical sources, or are the lastin a chain of objects that
refer to alternate canonical sources, may have the next field
set to an invalid value, which may be a well-defined unique
identifier that is not used normally. The volume catalog for the
newly-copied region continues to refer to the original meta-
data set, from which the chain of next fields can be followed
to find all the alternate canonical sources, including the
newly-copied region.

FIG. 7 illustrates example metadata cascade 700 for an
extended scenario. The scenario begins with volumes in the
configuration shown in FIG. 6. Thus, there is a primary vol-
ume, which has an associated volume catalog 720, a first
backup volume, which has an associated volume catalog 730,
a second backup volume, which has an associated volume
catalog 740, and a third backup volume, which has an asso-
ciated volume catalog 750. Additionally, the original meta-
data sets have been modified to include a next-in-chain entry,
illustrated here as column 7124, which contains a metadata
set identifier for a canonical source associated with the
canonical source in the metadata set.

Furthermore, the second backup volume is a clone that has
background copied the first two regions of the primary vol-
ume. Thus, when the first region of the primary volume was
copied to the second backup volume, a new entry was created
at the second to last metadata set 710. As just discussed, this
entry indicates that the first region (i.e., region zero) of the
second backup volume serves as a canonical source. Addi-
tionally, the original metadata set for the data, which is the
first metadata set 710, has been updated to refer to the new
entry in the next-in-chain column 7124. No changes were
made to the volume catalogs 720-750.

Similarly, when the second region of the primary volume
was copied to the second backup volume, a new entry was
created as the last metadata set 710. This entry indicates that
the second region of the second backup volume serves as a
canonical source. Additionally, the original metadata set

40

45

55

16

source for the data, which is the sixth metadata set 710, has
been updated to refer to the new entry in next-in-chain field
712d.

Thereafter, the storage system behaves as in the earlier
implementation, but with the following differences. When a
determination is needed regarding whether a region is a
canonical source, the storage system examines the chain of
metadata sets that the volume catalog refers to the first entry
of If a canonical source is written to for which there is a
canonical source earlier in a chain (e.g., a canonical source
that references the written-to canonical source), the storage
system does not copy any data on the physical storage.
Instead, the storage system removes the identifier for the
secondary canonical source from the chain of alternate
canonical sources so that it is a separate metadata set, sets the
reference count for the data set associated with the alternate
canonical source to one, decrements the reference count from
the metadata set in the chain that the secondary canonical
source was removed from, and updates the volume catalog for
the alternate canonical source to point directly to the data set
associated with the alternate canonical source.

Ifacanonical source that is the primary canonical source in
a chain (e.g., the one that is referred to by the volume cata-
logs) is written to, the storage system cannot easily identify
the volume catalog entries that refer to the metadata set in
question. Thus, the storage system may allocate a new meta-
data set that is initialized with the volume identifier and
volume location that has been written to and a reference count
of one and update the volume catalog for the primary canoni-
cal source to refer to the new metadata set. The storage system
may also update the metadata set at the start of the chain to
refer to the volume and location of the second volume in the
chain (e.g., a second canonical source), remove the second
metadata set from the chain, and decrement the reference
count of the metadata set at the start of the chain. By keeping
the metadata set referring to data that has not changed, the
storage system does not need to update the volume catalogs
for unmodified regions. Moreover, the storage system does
not have to move data to another volume even though a
canonical source is being overwritten.

FIG. 8 illustrates metadata model 700 being modified
according to this scenario for two writes. The first write is to
the first region (i.e., region zero) of the second backup vol-
ume, and the second write is to the second region (i.e., region
one) of the primary volume.

The first write illustrates a write to a canonical source for
which there is a canonical source earlier in the chain. Thus,
the storage system does not copy any data on the physical
storage. Instead, the storage system removes the association
with the secondary canonical source from the chain of alter-
nate canonical sources in the original metadata set so that the
chained metadata set is a separate metadata set, sets the ref-
erence count for the metadata set associated with the alternate
canonical source to one, decrements the reference count from
the first entry in the chain that the secondary canonical source
was removed from, and updates the volume catalog for the
alternate canonical source to point directly to the data set
associated with the alternate canonical source.

As the chain is a normal linked list, the normal removal
techniques work, where the next value for the object imme-
diately in the chain before that being removed is set to the
object being removed’s next value, which in turn is set to an
invalid value. The new write to the first region of the second
backup volume shows this. Moreover, the storage system
does not have to move data to another volume even though a
canonical source is being overwritten.

US 9,075,535 B2

17

The second write illustrates a write to a primary canonical
source in a chain. In this case, the storage system allocates a
metadata set with the volume identifier and volume location
that has been written to and a reference count of one and
updates the volume catalog for the primary canonical source
to refer to the new metadata set. In this implementation, the
storage system has reused the tenth metadata set 710 as this
metadata set is no longer needed. The storage system also
updates the metadata set at the start of the chain (i.e., the sixth
metadata set 710) to refer to the volume and location of the
secondary canonical source volume in the chain, removes the
second metadata set from the chain, and decrements the ref-
erence count of the metadata set at the start of the chain. By
keeping the metadata set referring to data that has not
changed, the storage system does not need to update the
volume catalogs for unmodified regions. Moreover, the stor-
age system does not have to move data to another volume
even though a primary canonical source is being overwritten.

If a volume region that has multiple associated canonical
sources is deleted, the storage system may behave the same as
if the region were written to, except that it does not need to
maintain a metadata set for that region. Thus, if a canonical
source for which there is a canonical source earlier in the
chain is being deleted, the storage system does not copy any
data on the physical storage. Instead, the storage system
removes the identifier for the secondary canonical source
from the chain of secondary canonical sources so that it is a
separate metadata set and decrements the reference count
from the first entry in the chain that the secondary canonical
source was disassociated from. The storage system may also
remove the metadata set associated with the volume being
cleaned. Moreover, the storage system does not have to move
data to another volume even though a canonical source is
being deleted.

If a canonical source that is the first canonical source in a
chain is being deleted, the storage system may update the
metadata set at the start of the chain to refer to the volume and
location of the second volume in the chain, remove the second
metadata set from the chain, and decrement the reference
count of the metadata set at the start of the chain. By keeping
the first metadata set in the chain referring to data that has not
changed, the storage system does not need to update the
volume catalogs for unmodified regions. Moreover, the stor-
age system does not have to move data to another volume
even though a canonical source is being deleted.

If there is only one canonical source associated with a
metadata set, the storage system may behave as in the case
where there are no alternate canonical sources when it is
written to or deleted. Thus, it may, among other things, copy
the data to the first volume in the cascade that depends on it.

The current implementation has a variety of features. For
example, cleaning has been improved by not needing to copy
data for dependent volumes unless there are no physical cop-
ies of the data on any volume in the cascade. For instance,
cleaning when a copy is deleted has been improved by not
needing to copy data for dependent volumes unless there are
regions that are canonical sources, for which there are no
physical copies of the data on any remaining volume in the
cascade.

These implementations are equally applicable to true cas-
cades of copies (where a copy is taken of a copy) as to
multiple-target copies (where multiple copies are taken of a
single source), and likewise to mixtures of the two in any
combination. These implementations rely on the underlying
cascaded point-in-time copy features, but improve them by no
longer requiring that the location of the physical storage for a

10

15

20

25

30

35

40

45

50

55

60

65

18

copy’s region lie in that copy or an immediately upstream
copy (with no intervening copies containing different data for
that region).

FIG. 9 illustrates an example process 900 for source clean-
ing cascaded volumes. Process 900 may, for example, be
performed by a storage system similar to storage system 120.

Process 900 calls for determining whether a write for a
volume has been received (operation 904). A write for a
volume may, for example, arrive from an external system. [fa
write for a volume has not been received, process 900 calls for
waiting for a write for a volume.

Once a write for a volume has been received, process 900
calls for determining whether the volume is a canonical
source for the region being written to (operation 908).

Ifthe volume is not a canonical source for the region being
written to, process 900 calls for decrementing a reference
count in a metadata set associated with the region (operation
912) and determining a metadata set location identifier (op-
eration 916). The metadata set location identifier may be a
new identifier or a recycled one. Process 900 also calls for
establishing the written-to volume as the canonical source for
the metadata set at the metadata location (operation 920) and
establishing the reference count to indicate that one volume
region refers to the new metadata set (operation 924). For
example, a reference count may be set to one. Process 900
additionally calls for writing the new data to the volume
(operation 928). Process 900 is then at an end.

If, however, the volume is a canonical source for the region
being written to, process 900 calls for determining whether
there is another canonical source for the region (operation
932). Determining whether there is another canonical source
may, for example, be accomplished by searching for a meta-
data set identifier in the metadata set.

Ifthere is not another canonical source for the region being
written to, process 900 calls for determining whether another
volume depends on the data in the region (operation 936).
Determining whether another volume depends on the data in
the region may, for example, be accomplished by examining
a reference count in the associated metadata set. If another
volume does not depend on the data in the region, process 900
calls for writing the new data to the volume (operation 928).
Process 900 is then at an end.

If, however, another volume does depend on the data in the
region, process 900 calls for examining volume catalogs to
determine the next volume having a region associated with
the written-to region (operation 940). Examining the volume
catalogs for a region associated with the written-to region
may, for example, be accomplished by searching the volume
catalogs for an identifier for the metadata set associated with
the written-to region. In particular implementations, this may
be accomplished by examining the volume catalogs at the
same location that the written-to region occupies in its vol-
ume catalog.

Process 900 also calls for copying the written-to region’s
existing data to the identified volume (operation 944) and
designating the identified volume as the canonical source for
the existing data in the associated metadata set (operation
948). Process 900 additionally calls for decrementing a ref-
erence count in the associated metadata set (operation 912),
determining a metadata location identifier (operation 916),
establishing the written-to volume as the canonical source for
the metadata set at the new metadata location (operation 920),
setting the reference count to one for the new metadata set
(operation 924), and writing the new data to the volume
(operation 928). Process 900 is then at an end.

If, however, there is another canonical source for the region
being written to, process 900 calls for determining whether

US 9,075,535 B2

19

the volume being written to is a secondary canonical source
for the region (operation 952). A volume may, for example, be
determined to be a secondary canonical source if it is not the
first in a chain of canonical sources.

If the volume being written to is a secondary canonical
source for the region being written to, process 900 calls for
removing an association between the volume and the primary
canonical source volume (operation 956). Removing the
association may, for example, be accomplished by deleting an
identifier for the secondary canonical source volume from the
metadata set for the primary volume. Process 900 also calls
for decrementing a reference count in the metadata set for the
primary volume’s associated region (operation 960), updat-
ing a volume catalog for the written-to volume to refer to
(e.g., point to) the metadata set associated with the written-to
region (operation 962), setting a reference count to one for the
metadata set associated with the written-to volume (operation
924), and writing the new data to the written-to volume (op-
eration 928). Process 900 is then at an end.

If the volume being written to is not a secondary canonical
source for the region being written to, process 900 calls for
examining at least one metadata set to identify another
canonical source (operation 964). Identifying another canoni-
cal source may, for example, include finding an identifier for
another metadata set in the metadata set associated with the
region being written to. Process 900 also calls for removing
an association between the volume being written to and the
identified volume in the metadata set associated with the
region being written to (operation 968). Removing the asso-
ciation may, for example, be accomplished by deleting an
identifier for a metadata set associated with the identified
volume from the metadata set for the primary canonical
source volume. Process 900 additionally calls for designating
the identified volume as the primary canonical source for the
existing data in the metadata set (operation 972) and decre-
menting areference count in the metadata set (operation 976).
Process 900 also calls for determining a metadata set location
identifier for the new data (operation 980), establishing the
written-to volume as the canonical source for the new data for
the metadata set associated with the metadata location iden-
tifier (operation 984), updating a volume catalog for the writ-
ten-to volume to refer to the metadata set associated with the
written-to region (operation 962), setting a reference count to
one for the metadata set associated with the written-to volume
(operation 924), and writing the new data to the written-to
volume (operation 928). Process 900 is then at an end.

Process 900 may operate as long as backup volumes are
active. Thus, process 900 can be repeated a large number of
times during normal operations.

Although process 900 illustrates one example process for
source cleaning cascaded volumes, other processes for source
cleaning cascaded volumes may include fewer, additional,
and/or a different arrangement of operations. For example, a
process may not include determining whether there is another
canonical source. This may, for example, occur when clone
copies are not being used to generate the cascaded volumes.
As another example, a process may include checking whether
another volume depends on the region to be written to before
checking whether the region is a canonical source. If no other
regions depend on the region to be written to, it may be
written to without concern for affecting other volumes. An
additional example, the write of the new data may be per-
formed before the metadata set is updated, unless the data in
the region to be written to needs to be moved before perform-
ing the write.

FIGS. 10A-B illustrate another example process 1000 for
source cleaning cascaded volumes. Process 1000 may, for

20

40

45

65

20

example, be performed by a system similar to storage system
120. Moreover, process 1000 may be used in conjunction with
process 900.

Process 1000 calls for determining whether a volume is to
be cleaned (operation 1004). A volume may, for example,
need to be cleaned if it is to be removed from a cascade or to
be restarted. If a volume is not to be cleaned, process 1000
calls for waiting for a volume to be cleaned.

Once a volume is to be cleaned, process 1000 calls for
selecting a region of the volume to clean (operation 1008).
This may, for example, occur by selecting the first region on
the volume, the last region on the volume, or a region in
between. Process 1000 also calls for determining whether
another volume depends on the data in the region (operation
1012). This may, for example, be accomplished by decre-
menting a reference count associated with the region, which
may, for example, be stored in a metadata set associated with
the volume region, and determining whether the reference
count has reached zero.

If another volume is does not depend on the data in the
region, process 1000 calls for deleting the associated meta-
data set (operation 1016), designating the region as complete
(operation 1018), and determining whether there is another
region in the volume (operation 1020). That is, if no other
volume depends on the selected region, it may be deleted
without consequence to the other cascaded volumes. Desig-
nating the region as complete may, for example, occur by
setting an indicator (e.g., number or flag) in an array or
notifying another process that the selected region has been
cleaned. A complete region may, for example, has its associ-
ated storage freed (e.g., if the disk is virtualized). If there is
not another region in the volume, process 1000 is at an end. If
there is another region in the volume, process 1000 calls for
selecting another region (operation 1008) and determining
whether another volume depends on the data in that region
(operation 1012).

If another volume depends on the data in a region, process
1000 calls for determining whether the volume being cleaned
is a canonical source for the selected region (operation 1028).
If the volume being cleaned is not a canonical source for the
region, process 1000 calls for decrementing a reference count
for the associated metadata set (operation 1028) and again
designating the region as complete (operation 1028) and
determining whether there is another region in the volume
(operation 1020). This is possible because another volume
region stores the associated data.

If the volume being cleaned is a canonical source for the
selected region, process 1000 calls for determining whether
there is another canonical source for the region. If there is not
another canonical source for the region, process 1000 for
examining volume catalogs for an identifier for the associated
metadata set (operation 1036). Process 1000 also calls for
copying the data in the region being written to the identified
volume (operation 1040) and designating the identified vol-
ume as the canonical source in the associated metadata set
(operation 1044). Process 1000 additionally calls for decre-
menting a reference count for the associated metadata set
(operation 1028) and again designating the region as com-
plete (operation 1018) and determining whether there is
another region in the volume (operation 1020).

If, however, there is another canonical source for the region
being cleaned, process 1000 calls for determining whether the
volume being cleaned is a secondary canonical source for the
region (operation 1048). If the volume being cleaned is a
secondary canonical source, process 1000 calls for removing
an association between the volume being cleaned and the
primary canonical source volume for at least one metadata set

US 9,075,535 B2

21

associated with the primary canonical source volume (opera-
tion 1052). Process 1000 also calls for removing a metadata
set indicating that the volume region being cleaned is a
canonical source (operation 1056) and decrementing a refer-
ence count in the metadata set associated with the primary
canonical source volume (operation 1060). Process 1000
additionally calls for designating the region as complete (op-
eration 1018) and checking for another volume region to be
cleaned (operation 1020).

If the volume being cleaned is not a secondary canonical
source, process 1000 calls for examining one or more meta-
data sets to identify another canonical source (operation
1064). For example, the metadata set associated with the
region being cleaned may be examined for an identifier of a
metadata set for another canonical source. As another
example, the metadata sets may be individually be examined
to identify a metadata set of another canonical source. Once
an appropriate metadata set has been identified, a volume and
region may be extracted from the identified metadata set.
Process 1000 also calls for removing a metadata set indicating
that the volume region being cleaned is a canonical source for
the selected region (operation 1068) and designating the iden-
tified volume as the canonical source for the existing data
(operation 1072). For example, an identifier for identified
volume may be substituted for the identifier of the volume
being removed in an associated metadata set.

Process 1000 additionally calls for removing an associa-
tion between the volume being cleaned and the identified
volume in at least one metadata set (operation 1076) and
decrementing a reference count in the metadata set associated
with the primary canonical source volume, which has just
been updated (operation 1060). Process 1000 additionally
calls for designating the region as complete (operation 1018)
and checking for another volume region to be cleaned (opera-
tion 1020).

Process 1000 may operate as long as backup volumes are
active. Thus, process 1000 can be repeated a large number of
times during normal operations.

Although process 1000 illustrates one example process for
source cleaning cascaded volumes, other processes for source
cleaning cascaded volumes may include fewer, additional,
and/or a different arrangement of operations. For example, a
process may not include determining whether there is another
canonical source. This may, for example, occur when clone
copies are not being used to generate the cascaded volumes.
As another example, a process may include checking whether
a volume is a canonical source before checking whether
another region depends on the selected. If a region is not a
canonical source, it may be deleted written without affecting
other volumes. An additional example, a metadata set does
not have to be removed. It may, for instance, become inactive
and/or overwritten at a later point.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of systems,
methods, and computer program products of various imple-
mentations of the disclosure. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of code, which can include one or more
executable instructions for implementing the specified logi-
cal function(s). It should also be noted that, in some alterna-
tive implementations, the functions noted in the blocks may
occur out of the order noted in the figures. For example, two
blocks shown in succession may, in fact, be executed substan-
tially concurrently, or the blocks may sometimes be executed
in the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or the flowchart illustration, and combination

35

40

45

55

22

of'blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based sys-
tems the perform the specified function or acts, or combina-
tions of special purpose hardware and computer instructions.

FIG. 11 illustrates an example computer system 1100 for
managing source cleaning for cascaded volumes. Computer
system 1100 may, for example, illustrate some of the compo-
nents of a storage controller of a storage system.

System 1100 includes a processor 1110, an input/output
system 1120, and memory 1130, which are coupled together
by a network 1140. As illustrated, computer system 1100 is
functioning as a storage controller of a storage system.

Processor 1110 typically includes a logical processing unit
(e.g., an arithmetic logic unit) that processes data under the
direction of program instructions (e.g., from software and/or
firmware). For example, processor 1110 may be a micropro-
cessor, amicrocontroller, or an application specific integrated
circuit. The processor may operate by reduced instruction set
computer (RISC) or complex instruction set computer
(CISC) principles. In general, the processor may be any
device that manipulates data in a logical manner.

Input/output system 1120 may include one or more com-
munication interfaces and/or one or more other user inter-
faces. A communication interface may, for instance, be a
network interface card (whether wireless or wireless) or a
modem. A user interface could, for instance, be a user input
device (e.g., a keyboard, a keypad, a touchpad, a stylus, a
mouse, or a microphone) or a user output device (e.g., a
monitor, a display, or a speaker). In general, input-output
system 1120 may be any combination of devices by which a
computer system can receive and output data.

Memory 1130 may, for example, include random access
memory (RAM), read-only memory (ROM), flash memory,
and/or disc memory. Various items may be stored in different
portions of the memory at various times. Memory 1130, in
general, may be any combination of devices for storing data.

Memory 1130 includes instructions 1132 and data 1136.
Instructions 1132 include an operating system 1133 (e.g.,
Windows, Linux, or Unix) and applications 1134, which
include a backup memory 1135. Data 1136 includes the data
required for and/or produced by applications 1134, including
write data 1137 and cascade metadata 1138.

Network 1140 is responsible for communicating data
between processor 1110, input/output system 1120, and
memory 1130. Network 1140 may, for example, include a
number of different types of busses (e.g., serial and parallel).

In certain modes of operation, processor 1110 is able to
receive writes (e.g., from an external system) and prepare
them for storage managed by the computer system. Addition-
ally, processor 1110, according to backup manager 1135, may
generate backup volumes for a primary volume in the storage
and generate metadata about each volume region that indi-
cates which regions refer to each other and which regions are
canonical regions. In particular implementations, for
example, each cascaded volume may have an associated vol-
ume catalog that maps the volume’s regions to one of a
number of metadata sets, the volume catalogs and the meta-
data sets together forming cascade metadata 1138.

Using cascade metadata 1138, processor 1110 may, among
other things, determine whether data needs to be copied when
a cascaded volume is written to. For example, if the volume
region being written to is not a canonical source, the data
therein may not have to be copied. As another example, if the
volume region being written to is a canonical source but no
other volume relies on it, the data therein may not have to be

US 9,075,535 B2

23

copied. Additionally, if the volume being written to is a
canonical source but an alternate canonical source exists, data
may not have to be copied.

Processor 1110 may also use the cascade data when clean-
ing a volume (e.g., when the volume is being deleted). For
example, the processor may use the data to determine that no
other region relies on a volume region, and thus, the volume
region may be deleted without affecting the rest of the cas-
cade. As another example, the processor may use the cascade
metadata to determine that a volume region being deleted is
not a canonical source and, again, may be deleted without
affecting the rest of the cascade. As a further example, the
processor may use the cascade metadata to determine that a
volume a canonical source, and hence, the data therein should
be copied to another volume. In certain implementations,
however, the processor may also use the cascade metadata to
determine whether an alternate canonical source exists for a
volume region, which may prevent the data in the volume
region from being copied.

Processor 1110 may, for example, accomplish these opera-
tions by implementing any of the techniques discussed above,
including one or more parts of processes 900-1000.

The terminology used herein is for the purpose of describ-
ing particular implementations only and is not intended to be
limiting. As used herein, the singular form “a”, “an”, and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises” and/or “comprising,”
when used in the this specification, specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations, ele-
ments, components, and/or groups therefore.

The corresponding structure, materials, acts, and equiva-
lents of all means or steps plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present implementations has been presented for purposes
of illustration and description, but is not intended to be
exhaustive or limited to the implementations in the form
disclosed. Many modification and variations will be apparent
to those of ordinary skill in the art without departing from the
scope and spirit of the disclosure. The implementations were
chosen and described in order to explain the principles of the
disclosure and the practical application and to enable others
or ordinary skill in the art to understand the disclosure for
various implementations with various modifications as are
suited to the particular use contemplated.

A number of implementations have been described for
source cleaning cascaded volumes, and several others have
been mentioned or suggested. Moreover, those skilled in the
art will readily recognize that a variety of additions, deletions,
modifications, and substitutions may be made to these imple-
mentations while still achieving source cleaning cascaded
volumes. Thus, the scope of the protected subject matter
should be judged based on the following claims, which may
capture one or more concepts of one or more implementa-
tions.

The invention claimed is:

1. A method comprising:

storing a primary volume and a plurality of cascaded
backup volumes for the primary volume, each volume
comprising a plurality of different addressable regions;

receiving writes for at least one of the volumes from an
external source and preparing the writes for storage;

10

15

20

25

30

35

40

45

50

55

60

65

24

determining whether a write is for a volume region that is
a canonical source;
if the write is for a region that is not a canonical source:
decrementing a reference count in a metadata set asso-
ciated with the region,
determining a metadata set location identifier,
establishing the volume of the region as a canonical
source for a metadata set associated with the metadata
set location identifier, and
establishing a reference count for the metadata set to
indicate that the metadata set is referred to by one
volume region; and
if the write is for a region that is a canonical source:
examining a metadata set associated with the region to
determine whether another volume depends on data in
the region, and
writing the new data to the region if another volume does
not depend on data in the region.
2. The method of claim 1, further comprising:
examining, if another volume does depend on data in the
region, a catalog for at least one volume to determine the
next volume having a region associated with the region
to be written to;
copying data in the region to be written to to the identified
volume;
decrementing a reference count in a metadata set associ-
ated with the region to be written to; and
designating the identified volume as a canonical source for
the copied data.
3. The method of claim 1, further comprising:
determining whether another canonical source is associ-
ated with the region to be written to;
determining, if another canonical source is associated with
the region to be written to, whether the volume to be
written to is a secondary canonical source for the region
to be written to; and
if the volume to be written to is a secondary canonical
source for the region to be written to:
removing an association between the volume to be written
to and a primary canonical source volume,
decrementing a reference count for a metadata set associ-
ated with a region of the primary canonical source vol-
ume associated with the region to be written to,
establishing a reference count to indicate one referring
volume region for a metadata set associated with the
region to be written to, and
updating a volume catalog for the volume to be written to
to identify the metadata set associated with the region to
be written to.
4. The method of claim 1, further comprising:
determining that a volume in the cascade needs to be
cleaned;
selecting, if a volume needs to be cleaned, a region of the
volume;
determining whether another volume depends on the
selected region;
designating the selected region as complete if another vol-
ume does not depend on the selected region; and
determining whether another volume region needs to be
cleaned.
5. The method of claim 4, further comprising:
determining, if another volume depends on the selected
region, whether the volume to be cleaned is a canonical
source for the selected region;
decrementing a reference count in a metadata set associ-
ated with the selected region if the volume to be cleaned
is not a canonical source for the selected region; and
designating the selected region as complete.

US 9,075,535 B2

25

6. The method of claim 5, further comprising:
examining, if the volume to be cleaned is a canonical
source for the selected region, volume catalogs for other
volumes for an identifier for a metadata set associated
with the selected region;
copying data in the selected region to the identified vol-
ume;
designating the identified volume as a canonical source for
a metadata set associated with the selected region; and
decrementing a reference count in the associated metadata
set.
7. The method of claim 5, further comprising:
determining whether there is another canonical source for
the selected region if the volume to be cleaned is a
canonical source for the selected region;
determining, if another canonical source exists, whether
the volume to be cleaned is a secondary canonical source
for the selected region;
removing an association between the selected region and a
primary canonical source volume in a metadata set asso-
ciated with the primary canonical source volume if the
volume being cleaned is a secondary canonical source
for the selected region; and
decrementing a reference count in the metadata set associ-
ated with the primary canonical source volume.
8. A method comprising:
storing a primary volume and a plurality of cascaded
backup volumes for the primary volume;
receiving writes for at least one of the volumes from an
external source and preparing the writes for storage;
determining whether a write is for a volume region that is
a canonical source;
if the write is for a region that is not a canonical source:
decrementing a reference count in a metadata set asso-
ciated with the region,
determining a metadata set location identifier,
establishing the volume of the region as a canonical
source for a metadata set associated with the metadata
set location identifier, and
establishing a reference count for the metadata set to
indicate that the metadata set is referred to by one
volume region; and
if the write is for a region that is a canonical source:
examining a metadata set associated with the region to deter-
mine whether another volume depends on data in the region,
and
writing the new data to the region if another volume does
not depend on data in the region; and further comprising:
examining, if another volume does depend on data in the
region, a catalog for at least one volume to determine the
next volume having a region associated with the region
to be written to;
copying data in the region to be written to to the identified
volume;
decrementing a reference count in a metadata set associ-
ated with the region to be written to; and
designating the identified volume as a canonical source for
the copied data.
9. A method comprising:
storing a primary volume and a plurality of cascaded
backup volumes for the primary volume;
receiving writes for at least one of the volumes from an
external source and preparing the writes for storage;

10

15

20

25

30

35

40

45

50

55

60

26

determining whether a write is for a volume region that is
a canonical source;
if the write is for a region that is not a canonical source:
decrementing a reference count in a metadata set asso-
ciated with the region,
determining a metadata set location identifier,
establishing the volume of the region as a canonical
source for a metadata set associated with the metadata
set location identifier, and
establishing a reference count for the metadata set to
indicate that the metadata set is referred to by one
volume region; and
if the write is for a region that is a canonical source:
examining a metadata set associated with the region to
determine whether another volume depends on data in
the region, and
writing the new data to the region if another volume does
not depend on data in the region; and further compris-
ing:
determining that a volume in the cascade needs to be
cleaned;
selecting, if a volume needs to be cleaned, a region of the
volume;
determining whether another volume depends on the
selected region;
designating the selected region as complete if another vol-
ume does not depend on the selected region; and
determining whether another volume region needs to be
cleaned.
10. The method of claim 9, further comprising:
determining, if another volume depends on the selected
region, whether the volume to be cleaned is a canonical
source for the selected region;
decrementing a reference count in a metadata set associ-
ated with the selected region if the volume to be cleaned
is not a canonical source for the selected region; and
designating the selected region as complete.
11. The method of claim 10, further comprising:
examining, if the volume to be cleaned is a canonical
source for the selected region, volume catalogs for other
volumes for an identifier for a metadata set associated
with the selected region;
copying data in the selected region to the identified vol-
ume;
designating the identified volume as a canonical source for
a metadata set associated with the selected region; and
decrementing a reference count in the associated metadata
set.
12. The method of claim 10, further comprising:
determining whether there is another canonical source for
the selected region if the volume to be cleaned is a
canonical source for the selected region;
determining, if another canonical source exists, whether
the volume to be cleaned is a secondary canonical source
for the selected region;
removing an association between the selected region and a
primary canonical source volume in a metadata set asso-
ciated with the primary canonical source volume if the
volume being cleaned is a secondary canonical source
for the selected region; and
decrementing a reference count in the metadata set associ-
ated with the primary canonical source volume.

#* #* #* #* #*

